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Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system
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We consider a simple model of an autocatalytic chemical reaction where a limit cycle rapidly increases to
infinite period and amplitude, and disappears under variation of a parameter. We show that this bifurcation can
be understood from seeing the system as a singular perturbation problem, and we find the bifurcation point by
an asymptotic analysis. Scaling laws for period and amplitude are derived. The unphysical bifurcation to
infinity disappears under generic modifications of the model, and for a simple example we show is replaced by
a canard explosion, that is, a narrow parameter interval with an explosive growth of the amplitude. The
bifurcation to infinity introduces a strong sensitivity that may result in chaotic dynamics if diffusion is added.
We show that this behavior persists even if the kinetics is modified to preclude the bifurcation to infinity.
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I. INTRODUCTION
Reaction schemes based on the cubic autocatalator a

fined in Eq.~1! below have been widely used as prototyp
for investigations into nonlinear dynamics of chemical re
tions. The central part of the scheme is a cubic autocata
step and a first-order decay of the catalyst,

A12B→3B ~with ratek1ab2!, B→C ~with ratek2b!,
~1!

wherea,b are the concentrations of the reactantsA,B and
k1 ,k2 are the rate constants. Here we are interested in st
ing reactions in closed systems where the reactantA is pro-
duced by a slow first-order decay of a precursorP,

P→A ~ratek0p!. ~2!

Clearly, the reaction based on the schemes~1! and ~2! will
eventually stop asP is consumed. However, if the reactantP
is initially present in a large amount, it is customary to i
voke thepooled chemical approximationand assume thatP
retains its initial concentrationp0 throughout the reaction
Introducing dimensionless variables, the differential eq
tions for the reaction scheme assuming the reactor is
stirred become

du

dt
5m2uv2,

dv
dt

5uv22v, ~3!

where u5Ak1 /k2a, v5Ak1 /k2b, t is the dimensionless
time scaled from physical time byk1 and m
5Ak1 /k2k0p0 /k2. This system allows limit cycles, corre
sponding to an oscillating reaction, for certain values ofm.
The oscillations are, of course, artefacts from the pooled
proximation, but even if the slow consumption ofP is in-
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cluded in a model the transient behavior will for a long tim
resemble the dynamics of the system~3! closely.

The system~3! has been studied in detail by Merkin
Needham, and Scott@1#. It was shown that the limit cycles
rapidly increase to infinite amplitude and period asm ap-
proaches a critical valuem` from above. Clearly, this un-
physical bifurcation to infinity limits the applicability of the
model ~3!, and it becomes interesting to establish wheth
the reaction scheme can be modified to avoid this bifurca
while still retaining the simplicity of the pooled approxima
tion. To this end, Merkin, Needham, and Scott@2# added the
uncatalyzed reaction

A→B ~ratek3a! ~4!

yielding the differential equations

du

dt
5m2uv22ru,

dv
dt

5uv22v1ru, ~5!

with r 5k3 /k2. It was shown that, as long asrÞ0, an inter-
val close tom` with rapid growth of amplitude and perio
persisted. However, the bifurcation to infinity did not occ
as the amplitude of the limit cycles remains bounded. Gr
Roberts, and Merkin@3# further added a quadratic autocat
lytic reaction,

A1B→2B ~ratek4ab! ~6!

resulting in

du

dt
5m2uv22ru2suv,

dv
dt

5uv22v1ru1suv,

~7!

with s5k4 /Ak1k2 and again obtained bounded trajectori
only.

The rapid but bounded growth of limit cycles over a sh
parameter interval as it occurs in the systems~5! and ~7! is
©2001 The American Physical Society09-1
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FIG. 1. Explosion and disap
pearance of the limit cycle of Eq
~3! for decreasing values ofm. ~a!
m50.92. ~b! m50.9005. ~c! m
50.9. Top row: Trajectories in the
(u,v) phase plane. Middle row:
Time trace ofu. Bottom row: Tra-
jectories in the (p,q) phase plane,
defined by the coordinate transfo
mation ~16!. Also shown is the
slow manifoldS2 from ~18!.
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known as acanard explosion. This is mathematically well
understood in singular perturbation systems of the form

du

dt
5 f ~u,v,m,e!,

dv
dt

5eg~u,v,m,e!, ~8!

in the limit e→0 @4#. Canard explosions in chemical system
have been identified in the Oregonator@5# and the Edblom-
Orbán-Epstein~EOE! reaction@6#.

In the present paper we show that it is possible to rew
the system~3! as a singular perturbation system. This po
of view gives rise to a simple geometric interpretation of t
bifurcation to infinity and allows an asymptotic determin
tion of m` . We also obtain scaling laws for amplitude an
period of the limit cycle as the bifurcation to infinity is ap
proached that deviate from the results in@1#, and we confirm
our results by numerical computations. The singular per
bation analysis is basically the same as is applied in
analysis of the canard explosion. We also analyze the m
02620
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fied system~5! and give a simple geometric explanation wh
modifications of the original system~3!, such as Eqs.~5! and
~7!, behave as they do.

We have previously@7,8# analyzed bifurcations to infinity
in models from mathematical economics and biochemis
In those studies we have, as in@1#, introduced critical points
at infinity and seen the bifurcation as being associated w
heteroclinic connections of the separatrices of these crit
points. The present analysis is simpler in that it only involv
objects in the Euclidean plane.

If the reactor is not well mixed, diffusion must be taken
account. If the reactor is spatially one dimensional t
pooled kinetics of Eq.~3! leads to the reaction-diffusion sys
tem

]u

]t
5lu

]2u

]x2
1m2uv2,

]v
]t

5lv

]2v

]x2
1uv22v, ~9!

wherelv ,lv are diffusion coefficients. The basic pattern fo
mation from local bifurcations subject to the no-flux boun
ary conditions
FIG. 2. Sketches of thep andq phase plane.~a! For the system~3!, the branchesS1 andS2 of the slow manifold with stable manifold
MS and the unstable manifoldMU , both in the boundary layer ofS2. The configuration shown withMS aboveMU allows a limit cycle.~b!
The slow manifold for the system~5! with turning pointT where the branchesS1 andS2 meet.
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]u

]x
5

]v
]x

50 for x50,1, ~10!

has been studied in some detail@9,10#. In @11# it was noted
that the amplitude of limit cycles born in a Hopf bifurcatio
may obtain large amplitudes asm is decreased. We analyz
this behavior for a case where both the diffusion consta
are small and show that the bifurcation to infinity introduc
a sensitivity that may result in chaotic dynamics. Finally,
show that this behavior is basically linked to the singu
perturbation nature of the problem, as it persists even if
kinetics is modified to the form~5!.

II. DYNAMICS OF THE WELL-STIRRED REACTOR

A. Singular perturbation of the pooled model

The system~3! has a critical point (u,v)5(1/m,m) which
is stable form.1 and loses stability in a Hopf bifurcation a
m51. By standard procedures@1# one finds the bifurcation
to be supercritical, so stable limit cycles exist form,1. As
m is decreased the amplitude and period grows rapidly,
whenm is decreased beyond the numerically obtained va

m`50.900 315 780 772 2; ~11!

the limit cycle disappears and only unbounded trajecto
remain. See Fig. 1.

The limit cycles display the characterstics of relaxati
oscillations: a slow phase is followed by fast, almost line

TABLE I. Results of the asymptotic calculation ofm` for e
51.

Order Contribution Approximation Relative error
k mk m`

(k)5(n50
k mn um`

(k)2m`u/m`

0 1.00000000 1.00000000 0.11072139
1 20.12500000 0.87500000 0.02811877
2 0.03125000 0.90625000 0.00659126
3 20.00488281 0.90136718 0.00116781
4 20.00449970 0.89666748 0.00405224
5 0.0757980 0.90424728 0.00436680
6 20.00622034 0.89802694 0.00254226
7 0.00072032 0.89874726 0.00174218
8 0.00958743 0.90833470 0.00890678
9 20.02425103 0.88408367 0.01802935
10 0.03671743 0.092080109 0.02275347
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motion. A formulation as a singular perturbation problem c
be achieved by following the analysis of@6# for the EOE
reaction. The key is the fact that the right hand sides of
differential equations are almost identical, except for a si
Indeed, the system can be written in the form

du

dt
5 f ~u,v !1g~u,v,m!,

dv
dt

52 f ~u,v !, ~12!

with

f ~u,v !5v2uv2, g~u,v,m!5m2v. ~13!

If g is replaced by 0 in Eq.~12! the isolated critical point
is replaced by two curves of critical points,

v50 and 12uv50. ~14!

Hence, if we modify~12! to include an auxiliary parametere
as

du

dt
5 f ~u,v !1eg~u,v,m!,

dv
dt

52 f ~u,v !, ~15!

we obtain a singular perturbation problem in the limite50,
and we recover the original problem whene51. With the
change of variables

p5
u2v

2
, q5

u1v
2

, ~16!

we obtain the system in the standard singular perturba
form,

dp

dt
5 f ~q1p,q2p!,

dq

dt
5e

g~q1p,q2p,m!

2
. ~17!

The curves of equilibria~14! become

S1 :p5q, S2 :q5Ap211, ~18!

and are denoted byslow manifolds. In the limit e50 it is not
difficult to see that the critical points onS1 are stable and the
critical points onS2 are stable whenp,0 and unstable when
p.0. Whene is sufficiently small and nonzero, there a
boundary layers close to the slow manifolds with slow d
namics. Close to a stable part there is an attracting trajec
and close to an unstable part there is a repelling traject
This is the content of Tikhonov’s theorem~see, e.g.,@4# or
s
w

FIG. 3. Scaling of amplitudeA and periodT
close to the bifurcation to infinity. The marker
show numerical simulations. The lines sho
least-squares fit from the data with ln(m2m`)
<25 yielding A520.9189 ln(m2m`)20.0506,
T521.120 ln(m2m`)15.547.
9-3
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@12# for a geometric version based on center manifolds!. The
separating trajectories, denoted stable and unstable mani
respectively, are shown for the boundary layer ofS2 in Fig.
2~a!.

The explosion of the limit cycle can now be understo
from the relative position ofMS andMU . When the configu-
ration is as shown in Fig. 2~a!, the limit cycle is attracted to
MS on the stable side ofS2 in a slow motion. Asp50 is
passed it is repelled up and away fromMU and moves rap-
idly back towardsMS as can be seen in~a! and ~b! of the
bottom row of Fig. 1. If the distance betweenMS and MU
~measured, e.g., atp50) is decreased, the limit cycle come
closer toMU and spends longer time in the unstable bou
ary layer before it is repelled. Hence the amplitude and
riod increases. IfMS moves to the other side ofMU , the
trajectories coming from the stable boundary layer enters
unstable boundary layer belowMU for a while and are then
repelled downwards into the stable boundary layer ofS1,
where unbounded motion occurs. In this case no limit cyc
can exist. This is shown in~c! in the bottom row of Fig. 1.

Hence, the bifurcation to infinite amplitude happens wh
MS and MU are the same trajectory. An asymptotic expre
sion for this trajectory and the corresponding value ofm can
be obtained as follows. Expansions of the trajectory

q~p!5q0~p!1eq1~p!1e2q2~p!1•••, ~19!

and the bifurcation point

m`5m01em11e2m21•••, ~20!

are inserted in the Eqs.~17!, and terms of the same order
e are collected. To orderek, this gives rise to an algebrai
equation forqk(p). In general, this has a singularity atp
50, butmk21 can be chosen in a unique way to remove
singularity and hence makes the trajectory well defined
all p.

Implementing this procedure in a computer algebra p
gram yields the results in Table I, where the expansion of
parameter is shown fore51. The asymptotic nature of th
series is apparent, as the agreement with the numerical r

TABLE II. Asymptotic calculation ofmc for Eq. ~5! for r
50.005.

Order Basic term Correction term mc for r 50.005
k mk

(0) mk
(1) (n50

k (mk
(0)1mk

(1)r )

0 1.00000000 21.50000000 0.99250000
1 20.12500000 1.81250000 0.85843750
2 0.03125000 21.23437500 0.88351563
3 20.00488281 20.11767578 0.87804443
4 20.00469971 0.25778198 0.87463364
5 0.00757980 20.12494087 0.88158874
6 20.00622034 20.04510999 0.87514284
7 0.00072032 0.17333773 0.87672986
8 0.00958744 20.21272633 0.88525366
9 20.02425103 0.11999141 0.86160259
10 0.03671743 22310.22742 210.6528170
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becomes poor if too many terms in the series are included
the series form is truncated when the absolute value of t
contribution is minimal at order 4, the error is only abo
0.4%.

B. Scaling
From the geometric analysis it is also possible to und

stand the scaling close to the bifurcation. As the bifurcat
is approached, the limit cycle spends more and more tim
the unstable boundary layer ofS2. Returning to the original
(u,v) variables, we have here thatv'1/u, and from the first
equation of Eq.~3! we getu(t)'K1mt for some constant
K. Let h5v21/u denote the deviation of the trajectory from
the slow manifold. We get

FIG. 4. Bifurcation diagram of Eq.~5! for r 50.005. The light
line is the steady state~full line stable, dashed line unstable.! The
heavy line is the limit cycle. The veritcal line is the asympto
canard point from Table II,mc'0.875.

FIG. 5. Solutions of Eq. ~9! showing @u(x50.5,t),v(x
50.5,t)#. ~a! m50.904, simple limit cycle.~b! m50.9001, period-2
limit cycle. ~c! m50.900 07, period-4 limit cycle. ~d! m
50.900 055, chaos.
9-4
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FIG. 6. Solution of Eq.~9! at m50.900 055,
corresponding to Fig. 5~d!. The top part showsv,
the lower showsu. The concentrations are show
in a scale from black~low! to white ~high!.
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dt
5h1~K1mt !h21

m

~K1mt !2
. ~21!

For larget the last term becomes negligible, and disregard
this term the solution of Eq.~21! becomes

h~ t !5S K1mt2m2
e2t~11dK2dm!

d D 21

, ~22!

whered5h(0). Forsmall d, that is, for trajectories close t
S2 this is

h~ t !5det1O~d2!. ~23!

Let the thickness of the boundary layer be denoted byD.
Then a trajectory leaves the boundary layer whenh(t)5D,
that is when

t5 ln
D

d
and u5K1m ln

D

d
. ~24!

Assuming that the entry of the limit cycle to the unstea
boundary layer is proportional tom2m` , that is,d5a(m
2m`), we get that the amplitudeA of the limit cycles scales
as the logarithm ofm2m` , but in contrast to the (m
2m`)21/2 scaling proposed in@2# on the basis of severa
local expansions of the limit cycle. Our result is confirm
by numerical computations shown in Fig. 3.

C. Canard explosion
The bifurcation to infinity is structurally unstable in th

sense that a generic modification of the equations will
stroy the behavior. However, an explosive change of am
tude will still occur, as we will demonstrate for the syste
~5!. Using again the transformation~16! the system still has
the form ~17!, now with

f ~u,v !5v2uv22ru, g~u,v !5m2v. ~25!

Introducing a small parameter as before, we now obtai
single slow manifoldu5v/(v21r ), as sketched in Fig. 2~b!.
This is no longer unbounded in thep direction, and trajecto-
ries in the boundary layer ofS1 must leave it as the turning
point T is reached. Here trajectories go rapidly at nearly c
stant q to the stable part ofS2, and are not unbounded
Hence, if MS is below MU limit cycles of large but finite
amplitude will occur. IfMS is aboveMU there are smaller
limit cycles that never reachS1, and the boundary betwee
02620
g
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these two kinds of limit cycles occur again exactly wh
MS5MU . The parameter value where this occurs has pre
ously been denoted thecanard pointmc @6#. This may be
determined asymptotically with the method we used befo
since the procedure depends only on the system in a ne
borhood ofp50. By this we have computed the canard po
for small values ofr by further expanding each term of Eq
~20! in r asmk5mk

(0)1mk
(1)r 1•••. The results of the com-

putations are shown in Table II. Again the series is clea
asymptotic, and breaking atk54 where the contributionmk

is minimal we obtainmc'0.875. The numerically obtaine
bifurcation diagram in Fig. 4 confirms the interpretation
mc .

III. THE REACTION-DIFFUSION SYSTEM

The homogeneous branch of steady solutio
@u(x,t),v(x,t)#5(1/m,m) for the reaction-diffusion system
~9! and ~10! can loose stability in both pitchfork and Hop
bifurcations. Further, the bifurcating steady branches has
ondary bifurcations, and a very rich set of possible structu
exists, as described in@9,10#. Here we consider the comple
dynamics associated with the bifurcation to infinity in a ca
with small diffusion coefficients

FIG. 7. Solutions of Eq.~5! with diffusion added forr 51024

showing @u(x50.5,t),v(x50.5,t)#. ~a! m50.905. ~b! m
50.899 69.~c! m50.899 60.~d! m50.899 587.
9-5
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lu5
0.009

p2
50.009 118 906 5, lv5

9

10
lu50.008 207 015 9.

~26!

We have performed simulations with the program react
diffusion system solver@13#, which employs a Crank-
Nicholson scheme with a Runge-Kutta method for the ti
integrations. We have used 50 spatial grid points and veri
the computations by making sample runs with 100 poi
that yielded almost identical results. The Galerkin meth
used in @11# turned out to give incorrect results~negative
concentrations! for the present choice of diffusion coeffi
cients.

Results from the simulations are shown in Fig. 5. Fo
high value of m a simple limit cycle exists, but asm is
decreased, period doubling bifurcations leading to chaos
cur. Further decreasingm yield chaotic transients, with a
long time behavior as in Fig. 5~d!, but with solutions even-
tually havingu→`,v→0.

The spatial structure of the solutions in the chaotic regi
can be seen from Fig. 6, where a few oscillations are sho
Most of the time the concentrations are almost homo
th

s
3

ci.
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neous, and the system essentially behaves as if no diffu
was present with slow changes of concentrations. Howe
as u becomes sufficiently large andv becomes sufficiently
small a fast wave moves across the domain,u becomes small
and v becomes large, and an almost homogeneous sta
reestablished. This is repeated in an irregular pattern, and
slow/fast behavior again confirms the singular perturbat
nature of the system.

The unbounded solutions allowed by the reactio
diffusion system will again disappear if the reaction sche
is modified. However, the chaotic dynamics may persist, a
stems from the sensitivity of the system to the relative po
tions of MS and MU . To demonstrate that we have pe
formed simulations with the reaction-diffusion system whe
the kinetics is given by Eq.~5!. Results are shown in Fig. 7
where essentially the same behavior as without the mo
cation is found. Hence, the chaotic dynamics is not relate
the bifurcation to infinity itself, but is rather associated wi
the sensitivity of trajectories in a parameter region wher
stable and an unstable boundary layer are close and inte
strongly, and may as well occur in a system that exhibit
canard explosion.
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